QUESTION BANK(for DA students)

MATHS-10+2 Relations & Functions

Multiple Choice Questions:-

Let **R** be the relation in the set **N** of Natural 1. number given by $\mathbf{R} = \{ (x, y) : x = y - 2, y > 6 \}$ Choose the correct answer. (a) $(2,4) \in \mathbf{R}$ (b) $(3,8) \in \mathbf{R}$ (c) $(6,8) \in \mathbf{R}$ (d) $(8,7) \in \mathbf{R}$

Answer: (c) $(6,8) \in R$

2. Let $R = \{(1,2), (2,2), (1,1), (4,4), (1,3), (3,3), (3,2)\}$ be a relation defined on the set $A = \{1,2,3,4\}$, then

R is reflexive and symmetric but not transitive (a)

R is reflexive and transitive but not symmetric (b)

R is symmetric and transitive but not reflexive (c)

(d) **R** is an equivalence relation

Answer: (b) **R** is reflexive and transitive but not symmetric

Let $f: \mathbb{N} \to \mathbb{N}$, $f(x) = x^2$, then 3.

> f is only one-one but not onto (a)

> f is only onto but not one-one (b)

f is one-one and onto (c)

None of the above (d)

Answer: (a) f is only one-one but not onto

If $f: \mathbf{R} - \{0\} \to \mathbf{R} - \{0\}$, $f(x) = \frac{1}{x}$ then for (x) is 4.

(a) 1 (b) $\frac{1}{x}$ (c) x (d) none of these

Answer: (c) x

If $\mathbf{R} = \{(x, y): x - y \text{ is divisible by } 3, x, y \in \mathbb{Z}\}$ then \mathbf{R} is 5.

(a) Reflexive only

(b) Symmetric only

(a) Reflexive only(b) Symmetric only(c) Transitive only(d) Equivalence Relation

Answer: (d) Equivalence Relation

If $f(x) = \sin x$, $g(x) = x^2$ then $f \circ g(x)$ is equal to 6.

(a) $\sin(x^2)$ (b) $(\sin x)^2$ (c) $(\sin x)^x$

(d) x

Answer: (a) $\sin(x^2)$

Match the column

7. Column-A Column-B

(i) $f: A \xrightarrow{one-one} f(A)$

(a) f is one one only

(ii) $f: \mathbb{N} \to \mathbb{N}, f(x) = x^2$

(b) f is onto only

(c) f^{-1} exists

(Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$)

8. Column-A Column-B $f(x) = x \forall R$ (a) f, g are inverse of each other (i) (b) Identity function (ii) $fog(x) = x \forall R$ (c) f = g(d) constant function (Answer:- $i \rightarrow (b)$, $ii \rightarrow (a)$) 9. Column-A Column-B $R = \{(x, y): x \le y^2, x, y \in R\}$ (i) (a) Equivalence Relation $\mathbf{R} = \{(x, y) : x - y \text{ is an integer } x, y \in \mathbb{Z}\}$ (ii) (b) Only symmetric (c) Not reflexive (Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$) 10. Column-A Column-B $f(x) = logx, g(x) = e^x$ (i) (a) $f \circ g(x) = \sin(\log x)$ $f(x) = \sin x, g(x) = \log x$ (b) $gof(x) = \sin(\log x)$ (ii) (c) $f \circ g(x) = x$ (Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$) 11. Column-A Column-B $R = \Phi$ (i) (a) Universal Relation $R = A \times A$ (ii) (b) R is reflexive but not symmetric (c) Empty Relation (Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$)

Column-A 12.

- $R = \{(x, x) : x \in A\}$ (i)
- Column-B
- (a) Empty Relation
- $R = \{(1,2), (2,3), (1,3)\}$ (b) Identity Relation (ii)
 - (c) Transitivity

(Answer:- $i \rightarrow (b)$, $ii \rightarrow (c)$

Fill in the blanks from the following options:-

(one-one, onto, 2,3, $A \times A$, reflexive, symmetric, 1, $\sqrt{3}$, $\frac{1}{\sqrt{3}}$)

If f(x) = logx then f(e)..... Answer: 1 13. If f(x) = tanx then $f\left(\frac{\pi}{3}\right)$ Answer: $\sqrt{3}$ 14. **Answer:** reflexive 15. Identity relation is also If R is defined relation on set A then R is subset of...... Answer: $A \times A$ 16. If f(x) = |x| and g(x) = [x] then fog (2.5)= 17. Answer: 2 If f is defined as $f: A \rightarrow f(A)$ then f is Answer: onto State as true or false:

- 19. Inverse of a function exists if and only if function in one-one and onto. (\checkmark)
- 20. If $f: A \to B$ and $g: C \to D$ then fog is defined. (\times)
- If $f \circ f(x) = x$ then $f = f^{-1}$ 21. **(√)**

- If $f(x) = x^3$ and $g(x) = x^{\frac{1}{3}}$ then fog (2) = 0 22. (\times) If R is any relation defined on A where A is non-empty set then $R \subseteq A \times A$ 23.
- If $R = \{(x, y): x y \text{ is an integer}, x, y \in \mathbb{Z}\}$ is defined on set of integers 24. then R is not reflexive. (\times)

25. If
$$f(x) = [x]$$
 then $f(2.5) = -2$ (×)

26. If
$$f(x) = |x|$$
 then $f(-7.5) = 7.5$

INVERSE TRIGONOMETRIC FUNCTION

Multiple Choice Questions:-

1. Principal value of $\sin^{-1}\left(\frac{-1}{2}\right)$ is :

(a)
$$-\frac{\pi}{6}$$
 (b) $\frac{\pi}{6}$ (c) $-\frac{\pi}{3}$ (d) $\frac{\pi}{3}$ Answer: (a) $-\frac{\pi}{6}$

2. Principal value of $\cos^{-1}\left(\frac{-1}{2}\right)$ is :

(b)
$$\frac{\pi}{3}$$
 (c) $-\frac{\pi}{3}$ (d) $\frac{5\pi}{3}$ Answer: (b) $\frac{2\pi}{3}$

3. Principal value of $tan^{-1}(\sqrt{3})$ is :

(a) 0 (b)
$$\frac{\pi}{6}$$
 (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{3}$ Answer: (d) $\frac{\pi}{3}$

4. If $\sin (\sin^{-1} \frac{1}{5} + \cos^{-1} x) = 1$ then value of x is:

(a) 5 (b)
$$\frac{1}{5}$$
 (c) -5 (d) $\frac{-1}{5}$ Answer: (b) $\frac{1}{5}$

5. If $\sin^{-1} x = y$, then:

(a)
$$x \in [-1,1]$$
 (b) $x \in (-1,1)$ (c) $x \in [0,1]$ (d) $x \in (0,1)$

Answer: $x \in [-1,1]$

6. If $\tan^{-1} x = y$, then:

If
$$\tan^{-1} x = y$$
, then:
(a) $y \in \mathbf{R}$ (b) $y \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ (c) $y \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ (d) $y \in [-1,1]$
Answer: (c) $y \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

7. $\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$ is equal to (a) π (b) $\frac{-\pi}{3}$ (c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{3}$ Answer: (b) $\frac{-\pi}{3}$

Match the Column:

8. Column-A Column-B

(i)
$$cos^{-1} \left[cos \left(\frac{\pi}{6} \right) \right]$$
 (a) $3 cos^{-1}x$
(ii) $sin^{-1}(3x - 4x^3)$ (b) $3 sin^{-1}x$
(c) $\pi /6$

(Answer:- $i \rightarrow (c)$, $ii \rightarrow (b)$) 9. Column-A Column-B

- (i) $\sin^{-1}x$
- (a) Domain = [-1, 1]
- (ii) $cos^{-1}x$

- (b) $Range = [0, \frac{\pi}{2}]$ (c) $Range = [\frac{-\pi}{2}, \frac{\pi}{2}]$

(Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$)

- 10. Column-A
- Column-B
- (i) $tan^{-1}(1)$
- (ii) $sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
- (a) $-\frac{\pi}{3}$ (b) $\frac{\pi}{\frac{3}{4}}$ (c) $\frac{\pi}{4}$

(Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$)

- 11. Column-A
- Column-B
- (i) $sin^{-1}\left(\frac{2x}{1+x^2}\right)$ (ii) $sin^{-1}(-x)$
- (a) $cos^{-1}x$
- (b) $2 \tan^{-1} x$
- (c) $-\sin^{-1}x$

(Answer:- i. \rightarrow (b), ii. \rightarrow (c))

- 12. Column-A
- Column-B
- $tan^{-1}x + tan^{-1}y$ (i)
- (ii) $tan^{-1}x tan^{-1}y$
- (a) $tan^{-1} \left(\frac{x+y}{1-xy} \right)$ (b) $tan^{-1} \left(\frac{x-y}{1+xy} \right)$ (c) $tan^{-1} \left(\frac{x+y}{1+xy} \right)$

(Answer:- $i \rightarrow (a)$, $ii \rightarrow (b)$)

- 13. Column-A
- Column-B
- $\cos^{-1}(4x^3 3x)$
- (a) $2 \tan^{-1} x$
- (ii) $tan^{-1} \left(\frac{2x}{1-x^2}\right)$
- (b) $3 \tan^{-1} x$
- (c) $3 \cos^{-1} x$

(Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$)

Fill in the blanks from the following options:-

$$\left(\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), \frac{\pi}{2}, [0, \pi], \left[\frac{-\pi}{2}, \frac{\pi}{2}\right], \sqrt{3}, R, \frac{-1}{2}, \sqrt{3}\right)$$

 $sin^{-1}x + cos^{-1}x = \dots$ 14.

Answer: $\frac{\pi}{2}$

If $cos^{-1}x = y$ then $y \in \dots$ 15.

Answer: $[0, \pi]$

16.

- Answer: R
- If $tan^{-1}x = y$ then $x \in$ If $tan^{-1}x = \frac{\pi}{3}$ then x = ...17.

- Answer: $\sqrt{3}$
- If $cos^{-1}x = \frac{2\pi}{3}$ then x =18.
- If $sin^{-1}(\sin x) = x$ then $x \in \dots$ 19.
- Answer: $\frac{-1}{2}$ Answer: $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

State as true or false:

20. Principal value of
$$sin^{-1}\left(\frac{1}{2}\right)$$
 is $\frac{\pi}{3}$ (×)

21. Principal value of
$$tan^{-1}(-1)$$
 is $\frac{\pi}{4}$ (×)

22. If
$$\theta = \sin^{-1}\left(\frac{3}{5}\right)$$
 then $\theta = \tan^{-1}\left(\frac{4}{5}\right)$ (×)

23. If
$$sin^{-1}x = y$$
 then $y \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$ (×)

24. Simplest form of
$$tan^{-1}\left(\frac{1-tanx}{1+tanx}\right)$$
 is $\frac{\pi}{4}-x$

25. Simplest form of
$$sin^{-1}(3x - 4x^3)$$
 is $3 cos^{-1}x$ (×)

3 Marks Questions

Prove that:

1.
$$tan^{-1}\frac{1}{3} + tan^{-1}\frac{1}{5} = tan^{-1}\frac{4}{7}$$

1.
$$tan^{-1} \frac{1}{3} + tan^{-1} \frac{1}{5} = tan^{-1} \frac{4}{7}$$

2. $tan^{-1} \frac{1}{2} + tan^{-1} \frac{2}{11} = tan^{-1} \frac{3}{4}$

3.
$$2tan^{-1}\frac{1}{2} + tan^{-1}\frac{1}{7} = tan^{-1}\frac{31}{17}$$

4.
$$sin^{-1}\left(\frac{3}{5}\right) - sin^{-1}\left(\frac{8}{17}\right) = cos^{-1}\left(\frac{84}{85}\right)$$

5.
$$2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$$

6.
$$tan^{-1}\sqrt{x} = \frac{1}{2}cos^{-1}\left(\frac{1-x}{1+x}\right)$$

7. Solve:
$$tan^{-1} 2x + tan^{-1} 3x = \frac{\pi}{4}$$
 Answer: $\left(-1 \text{ or } \frac{1}{6}\right)$

8. Solve:
$$2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$$
 Answer: $\left(\frac{\pi}{4}\right)$

9. If
$$tan^{-1} \frac{x-1}{x-2} + tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$
, then find the value of x

Answer:
$$\left(\frac{\pm 1}{\sqrt{2}}\right)$$

10. If
$$tan^{-1} \frac{x}{2} + tan^{-1} \frac{x}{3} = \frac{\pi}{4}$$
, then find the value of x

Answer:
$$(1 \text{ or } -6)$$

11. Simplify:
$$tan^{-1} \left[\frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right]$$

Answer:
$$\left\{ \tan^{-1} \left(\frac{a}{b} \right) - x \right\}$$

12. Simplify:
$$\tan \frac{1}{2} \left[sin^{-1} \frac{2x}{1+x^2} + cos^{-1} \frac{1-y^2}{1+y^2} \right]$$

Answer:
$$\left(\frac{x+y}{1-xy}\right)$$

MATRICES

Multiple Choice Questions:-

1. If matrix $A=\left[a_{ij}\right]_{2\times 2}$ is such that $a_{ij}=i^2$ + j then a_{21} is

(b) 5

(c) 6

(d) 7

Answer:(b) 5

2. If AB = C where A is matrix of order 2×3 and B is a matrix of order 3×4 then order of matrix C is:

(a)
$$2 \times 4$$

(b) 4×2

(c) 2×2

(d) 3×3

Answer:(a) 2×4

3. If A + B = C where order of matrices A and B is 3×4 then order of matrix c is

(a)
$$4 \times 3$$

(b) 3×2

(c)
$$2 \times 3$$

(d) 3×4

Answer:(d) 3×4

4.			C where B is		order	4×2 and C	is a matrix of order $3 \times$
		(a) 3	\times 4	(b) 4×3		(c) 3×3	(d) 2×2
							Answer: (a) 3×4
5.	The num	ber of (b) 1		matrices of oi (c) 81	rder 3	imes 3 with ent (d) 512	ry 0 or 1 is:(a) 27
							Answer: (c) 81
6.	If $\begin{bmatrix} 3x + y \end{bmatrix}$	- 7 1 2	$\begin{bmatrix} 5 \\ -3x \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$	$\begin{bmatrix} 0 & y-2 \\ 8 & 4 \end{bmatrix}$ th	nen		
		(a) <i>x</i>	$=\frac{-1}{3}, y=7$	(b) Not po	ossible	e to find th	e value of x & y
		(c) <i>x</i>	$=\frac{-2}{3}$, $y=7$	3		3	the value of x & y
	Match t	he col	umn				
	7.	(Column-A		Colun	nn-B	
			A + A'		(a)	Rectangula	r Matrix
		(ii)	A - A'		(b)	skew-symm	etric matrix
					(c)	Symmetric	matrix
					(Answ	er:- i . \rightarrow (c) ,	$ii. \rightarrow (b)$)
	8.		Column-A		Colun	nn-B	
		(i)	(AB)'		(a)	A'B'	
			(BA)'		• •	(A+B)'	
		` ,				B'A'	
					(Answ	er:- $i \rightarrow (c)$,	$ii. \rightarrow (a)$)
	9.		Column-A			Column-B	
		(i)	$(AB)^{-1}$		(a)		
		(ii)	(A')'		(b)		
						$B^{-1}A^{-1}$	
					(d)	$A^{-1}B^{-1}$	
					(Answ	er:- i . \rightarrow (c) ,	$ii. \rightarrow (a)$)
	10		Column-A			Column-B	
		(i)	Identity Ma	trix	(a)	Only one co	l.mn

Column-A 11.

(ii)

Row Matrix

Column-B

Square Matrix

Only one row

(Answer:- i. \rightarrow (b), ii. \rightarrow (c))

(b)

- (i) **Matrix Addition** Non-commutative (a) (ii) Matrix Multiplication (b) Transpose (c) Commutative (Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$) 12. Column-A Column-B $A = [a_{ij}]_{m \times n}$, m = n**Row Matrix** (i) (a)
 - (ii) $A = [a_{ij}]_{m \times n}$, m = n (a) Row Matrix (ii) $A = [a_{ij}]_{1 \times n}$ (b) Column Matrix (c) Square Matrix

(Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$)

Fill in the blanks from the following options:-

(Inverse, 9,10, 3, symmetric, skew-symmetric, 4×3 , 4×4)

- 2. If order of matrix A is 5×2 then number of elements in A are

4. If order of A is 3×4 then order of A'

Answer: 4×3

Answer: 10

5. If for a matrix A, A' = A holds then A is called matrix.

Answer: symmetric

6. If for a matrix A, A' = -A holds then is called matrix.

Answer: skew-symmetric

7. If AB = BA = I then A and B are matrices of each other.

Answer: Inverse

State as true or false:

- 8. If A and B are symmetric matrices of same order then AB-BA is a symmetric matrix. (\times)
- 9. If a matrix is symmetric as well as skew-symmetric then it is a null matrix. (\checkmark)
- 10. Any square matrix can be expressed as the sum of symmetric and skew-symmetric matrix. (✓)
- 11. Matrix multiplication is not associative. (\times)
- 12. AB is a null matrix iff either A is null matrix or B is null matrix. (\times)
- 13. If A is a square matrix then A A' is skew-symmetric. (\checkmark)

3 Marks Questions

- 1. If $A = [a_{ij}]_{2\times 2}$, $a_{ij} = (i+2j)^2$ then find A. Answer: $A = \begin{bmatrix} 9 & 25 \\ 16 & 36 \end{bmatrix}$
- 2. Find x, y and $z, if \begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}$

Answer: (x = 2, y = 4, z = 3)

3. Find *X*, if $Y = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}$ and $2X + Y = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$ **Answer:** $X = \begin{bmatrix} -2 & -5/2 \\ 1/2 & -3 \end{bmatrix}$

4. If
$$A = \begin{bmatrix} 2 & 3 \\ 7 & 2 \end{bmatrix}$$
 then find $A^2 - 5A + 2I$ Answer: $X = \begin{bmatrix} 17 & -3 \\ -7 & 17 \end{bmatrix}$

5. If
$$A = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
, $B = [-2 \ 3 \ 1]$ then verify that $(AB)' = B'A'$

6. Express
$$\begin{bmatrix} 5 & 6 \\ -1 & 7 \end{bmatrix}$$
 as sum of symmetric and skew-symmetric matrices.

7. If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
 then show that $A + A'$ is a symmetric matrix

8. If
$$A = \begin{bmatrix} 3 & -1 \\ 5 & 10 \end{bmatrix}$$
 then show that $A - A'$ is a skew-symmetric matrix

7. If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
 then show that $A + A'$ is a symmetric matrix.
8. If $A = \begin{bmatrix} 3 & -1 \\ 5 & 10 \end{bmatrix}$ then show that $A - A'$ is a skew-symmetric matrix.
9. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix}$ then show that $(A - B)' = A' - B'$

10. Find the inverse of
$$\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$
 by elementary transformations.

Answer:
$$\begin{bmatrix} 1 & 0 \\ -1 & 1/2 \end{bmatrix}$$

11. If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$ then find AB and BA.

Answer:
$$AB = \begin{bmatrix} 0 & -4 \\ 10 & 3 \end{bmatrix}$$
, $BA = \begin{bmatrix} -10 & 2 & 21 \\ -16 & 2 & 37 \\ -2 - 2 & 11 \end{bmatrix}$

12. Simplify: $\cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$

12. Simplify:
$$\cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$$

Answer:
$$AB = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

4 Marks Questions

- Give two examples each of 1.
 - (i) Row Matrix
- (ii) Square Matrix
- 2. Give two examples each of

 - (i) Column Matrix (ii) Diagonal Matrix
- Write null matrix and identity matrix of two different orders each. 3.

4. If
$$\begin{bmatrix} x & y \\ z & a \\ b & c \end{bmatrix} = \begin{bmatrix} \frac{-3}{2} & 0 \\ 2 & \sqrt{6} \\ 3 & 2 \end{bmatrix}$$
 then find $x, y, z, a, b \& c$.

- Write two differences between symmetric matrices and skew-symmetric 5. matrices.
- 6. Give two example each of
 - (i) square matrix
- (ii) diagonal matrix
- 7. Give an example of matrices A and B where $A \neq 0$, $B \neq 0$ but AB = 0
- Give an example of matrices A and B where AB = BA8.
- 9. Write two differences between null matrix and identity matrix.
- Write two differences between identity matrix and diagonal matrix 10.

DETERMINANTS

Multiple Choice Questions:

- 1. If $\begin{vmatrix} x & 1 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix}$ then value of x is: (c) 3
- (d) 4
- Answer: (c) 3
- If $\begin{vmatrix} x & 1 \\ 1 & x \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 2 & 4 \end{vmatrix}$ then value of x is: 2.

- (d) ± 3
- **Answer:** (d) ± 3
- If $\Delta = \begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}$ then value of Δ is: 3.
- (c) 22
- (d) 24
- Answer: (a) 18
- 4. Which of the following is correct:
 - (a) Determinant is a square matrix.
 - (b) Determinant is a number associated to a matrix.
 - (c) Determinant is a number associated to a square matrix.
 - (d) None of these

Answer: (c) Determinant is a number associated to a square matrix.

- If A is a matrix of order 3×3 then |KA| is: 5.

 - (a) K|A| (b) $K^2|A|$
- (c) $K^3|A|$
- (d) 3K|A|
- Answer: (c) $K^3|A|$
- If A is non-singular square matrix of order 3×3 , then |adj.A| is equal to: 6.
 - (a) |A|
- (b) $|A|^2$
- (c) $|A|^3$
- (d) 3|A|
- Answer: (b) $|A|^2$

Match the columns:

- 7. Column-A
 - |A|(i)
 - Singular Matrix A (ii)
- Column-B
- |A| = 0(a)
- $|A| \neq 0$ (b)
- |A'|(c)
 - (Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$)

- 8. Column-A
 - AB = BA = I(i)
- Column-B (a)
- A = B = 0
- $(A^{-1})^{-1}$ (ii)
- $A^{-1} = B \text{ or } B^{-1} = A$ (b)
- (c)
 - (Answer:- i. \rightarrow (b), ii. \rightarrow (c))

- 9. Column-A
 - A(adj A)(i)
 - AI(ii)

- Column-B
- (a) Α |A|I(b)
- Ι (c)

(Answer:- $i \cdot \rightarrow (b)$, $ii \cdot \rightarrow (a)$)

- 10. Column-A
 - |A| = 0(i)
- Column-B
- $A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$

(ii)
$$|A|=2$$
 (b) $A=\begin{bmatrix}3&4\\-1&-1\end{bmatrix}$ (c) $A=\begin{bmatrix}5&4\\2&2\end{bmatrix}$ (Answer:- $i. \rightarrow (a)$, $ii. \rightarrow (c)$)

11. Column A Column B
(i) $Non-Singular\ matrix\ A$ (a) $|A|=0$ (ii) $Singular\ matrix\ A$ (b) $|A|\neq 0$

(Answer:- $i \rightarrow (b)$, $ii \rightarrow (a)$)

12. Column A

 $\begin{vmatrix} x & 2 \\ 3 & 4 \end{vmatrix} = 0$ $\begin{vmatrix} 4 & 3 \\ r & 1 \end{vmatrix} = 0$

(ii)

(a) $x = \frac{4}{3}$

Column B

(b) $x = \frac{3}{4}$

(c) $x = \frac{3}{2}$

(Answer:- $i \rightarrow (c)$, $ii \rightarrow (a)$)

Fill in the blanks from the following options:

(Square, 10, 9|A|, 27 |A|, 25, 125, 0, 1, singular, non-singular)

- 13. Determinant is a number associated to amatrix. Answer: Square
- If |A| = 10 then |A'| =14. Answer: 10
- $\begin{vmatrix} x & x+1 \\ x-1 & x \end{vmatrix} = \dots$ 15. Answer: 1
- 16. If |A| = 0 then A is amatrix. **Answer:** singular
- If $|A| \neq 0$ then A is amatrix. Answer: non-17.
- If A is a matrix of order 3×3 and |A| = 5 then $|adj.A| = \dots$ 18.

Answer: 25

19. If A is a matrix of order 3×3 then $|3A| = \dots$

Answer: 27 |A|

State as true or false:

The value of determinant changes if its rows and column are interchanged. 20.

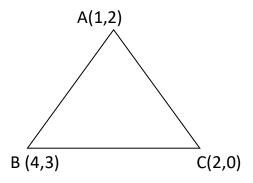
- If any two rows of a determinant are inter-changed then sign of determinant 21. changes.
- If any two rows of a determinant are identical then value of determinant is 22. non-zero. (\times)
- Value of determinant changes when it is expanded by different rows or 23.
- 24. Area of a triangle cannot be calculated using determinants. (\times)
- 25. A system of linear equations can be solved by matrices and determinants. (\checkmark)

26. Minors and co-factors of determinants are one and the same things. (\times) **3 Marks Questions**

- Using determinants find the equation of the line passing from the points 1. (2, -6) and (4, 5).
- 2. Find the area of triangle with vertices (2, 3), (5,7) and (9, -3).

- 3. Find the values of K if area of triangle is 4 sq. units and vertices are (K, 0), (4, 3), (5, 4).
- 4. Find the minor M_{23} , M_{31} , M_{33} in the determinant

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 4 & -1 & 7 \\ 6 & 0 & 8 \end{vmatrix}$$

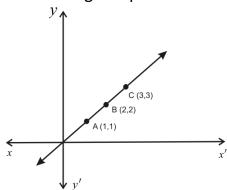

5. Find the co-factors A_{11} , A_{22} , and A_{32} in the determinant

$$\Delta = \begin{vmatrix} 4 & -1 & 0 \\ 3 & 7 & 8 \\ 5 & 3 & 6 \end{vmatrix}$$

- 6. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then show that |3A| = 9|A|
- 7. Prove that : $\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = 0$
- 8. Prove that: $\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & y^2 \end{vmatrix} = (x y)(y z)(z x)$
- 9. If $A = \begin{bmatrix} 2 & 6 \\ 5 & 1 \end{bmatrix}$ then find adj.(A)
- 10. Using matrices solve the equations: 2x + 5y = 1, 3x + 2y = 7
- 11. If $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ then show that A.(adj.A) = (adj.A) A
- 12. If $A = \begin{bmatrix} 4 & 5 \\ 2 & 3 \end{bmatrix}$ then find A^{-1}

4 Marks Questions

1. Find the area of $\triangle ABC$ using determinants.



- 2. Write the differences between matrix and determinant.
- 3. Write the differences between minors and co-factors.
- 4. Give two examples of determinants with value zero.
- 5. Give two examples of square matrices whose determinant is zero.

11

6. Give two examples of 2×2 non-singular matrices.

- 7. Compare the values of $\Delta = \begin{vmatrix} 2 & 3 & 1 \\ -1 & 4 & 2 \\ 3 & 0 & 1 \end{vmatrix}$ with the determinant obtained after $R_1 \rightleftharpoons R_2$
- 8. Using determinant show that given points in the figure are collinear.

- 9. Give one example each of a singular matrix and non-singular matrix of order 2×2
- 10. Write the numbers in spaces for which given determinant vanishes.

$$\begin{vmatrix} 0 & 4 & - \\ - & 0 & 6 \\ 5 & -6 & 0 \end{vmatrix}$$

Continuity and Differentiability

Multiple Choice Questions:

1. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx}$ is:

(a) t (b) 0 (c)
$$\frac{1}{t}$$
 (d) a **Ans = (c)**

2. The derivative of $\cos 5 x$ w.r.t. x is

(a)
$$5\sin 5x$$
 (b) $\sin 5x$ (c) $-5\sin 5x$ (d) $5\cos 5x$ Ans = (c)

3. If $f(x) = \begin{cases} kx - 2, x \le 4 \\ 1 + 2x, x > 4 \end{cases}$ is a continuous function, then the value of k is

(a)
$$\frac{11}{4}$$
 (b) $\frac{-5}{4}$ (c) $\frac{7}{4}$ (d) $\frac{4}{11}$ Ans = (a)

4. If $x^3 + y^3 = 10$, then the value of $\frac{dy}{dx}$ is

(a)
$$\frac{-y^2}{x^2}$$
 (b) $\frac{-x^2}{y^2}$ (c) $\frac{x^2}{y^2}$ (d) $\frac{y^2}{x^2}$

5. If $y = cos^{-1} \left[\frac{\sqrt{x}-1}{\sqrt{x}+1} \right] + sin^{-1} \left[\frac{\sqrt{x}-1}{\sqrt{x}+1} \right]$ then $\frac{dy}{dx}$ is equal to

(a) 1 (b)
$$\frac{\sqrt{x}+1}{\sqrt{x}-1}$$
 (c) $\frac{\sqrt{x}-1}{\sqrt{x}+1}$ (d) 0 Ans = (d)

6. The derivative of $\tan \left(\frac{\pi}{2} - x\right)$ is equal to

(a)
$$\sec^2\left(\frac{\pi}{2} - x\right)$$
 (b) $-\cos ec^2x$ (c) $\cos ec^2x$ (d) $\tan^2\left(\frac{\pi}{2} - x\right)$ Ans = (b)

Match the Column:

(a)
$$\frac{d}{dx}(e^{-nx})$$

(i)
$$-ne^{-nx}$$

(b)
$$\frac{d}{dx}(e^{nx})$$

(ii)
$$-ne^{nx}$$

(iii)
$$ne^{nx}$$

Ans
$$\begin{bmatrix} (a) \to (i) \\ (b) \to (iii) \end{bmatrix}$$

(a)
$$\frac{d}{dx} \tan^{-1}(\cot x)$$

(b)
$$\frac{d}{dx} \left(\sec^{-1} x + \csc^{-1} x \right)$$

Ans
$$\begin{bmatrix} (a) \to (iii) \\ (b) \to (i) \end{bmatrix}$$

(a)
$$\frac{d}{dx}(n^x)$$

(i)
$$x^a \log a$$

(b)
$$\frac{d}{dx}(x^a)$$

(ii)
$$ax^{a-1}$$

Ans
$$(a) \rightarrow (iii)$$

 $(b) \rightarrow (ii)$

(iii)
$$n^x \log n$$

$$(b) \rightarrow ($$

(a)
$$\frac{d}{dx}(\sin x)$$
 at $x = \frac{\pi}{2}$

(b)
$$\frac{d}{dx}(\cos x)$$
 at $x = \frac{\pi}{2}$

(iii)

-1

Ans
$$\begin{bmatrix} (a) \to (i) \\ (b) \to (iii) \end{bmatrix}$$

11. Column-A

Column-B

(a)
$$x = 2at^2, y = at^4$$

(b)
$$x^2 + xy + y^2 = 100$$

Ans
$$\begin{bmatrix} (a) \rightarrow (iii) \\ (b) \rightarrow (i) \end{bmatrix}$$

12.

(a)
$$\underbrace{Lt}_{x\to 0} \frac{\sin 2x}{x} =$$

(b)
$$Lt \frac{\tan 3x}{3x} =$$

Ans
$$\begin{bmatrix} (a) \to (ii) \\ (b) \to (iii) \end{bmatrix}$$

13. Column-A

(a)
$$\frac{d}{dx}(\sin^{-1}x)$$

(i) Column -B
$$\frac{1}{\sqrt{1-v^2}}$$

(b)
$$\frac{d}{dx}(\cos^{-1}x)$$

(ii)
$$\frac{1}{1+x^2}$$

(iii)
$$\frac{-1}{\sqrt{1-x^2}} \qquad \text{ Ans } \begin{bmatrix} (a) \to (i) \\ (b) \to (iii) \end{bmatrix}$$

Fill in the blanks from followings options:

 $(\frac{2}{3x}, \frac{-1}{x^2} - 2, \text{Integral points,applicable}, \frac{\cos(\log x)}{x}, \frac{5}{2}, 3x^2, \frac{\sqrt{3}+1}{2}, \frac{3}{2}, \frac{\sin(\log x)}{x}, \frac{\sqrt{3}-1}{2}).$

14. The derivative of sin (log x) is _____

Ans:
$$\frac{\cos(\log x)}{x}$$

15. If $y = \log x - x^2$ then $y_2 =$ _____

Ans:
$$\frac{-1}{x^2} - 2$$

16. The derivative of x^2 w. r. t. x^3 is _____

Ans:
$$\frac{2}{3x}$$

17. The function f(x) = [x] is discontinuous at all ______.

Ans: Integral points.

18. If $f(x) = \sin x - \cos x$, then $f'(\frac{\pi}{3})$ is equal to _____.

$$\operatorname{Ans}:\frac{\sqrt{3}+1}{2}$$

19. Mean Value theorem for the function $f(x) = x^2 - 2x + x = [1, 2]$ is

$$f(x) = x^2 - 2x, x \in [1,2]$$
 is ______.

Ans: applicable

20. The derivative of $e^{3\log x}w.r.t.x$ is equal to ______.

Ans: $3x^2$

State True or False:

21. Trigonometric functions are differentiable functions in their respective domains .

14

Ans : True

22.
$$\frac{d}{dx}(e^{\sin^{-1}x}) = e^{\cos^{-1}x} \left(\frac{1}{\sqrt{1-x^2}}\right)$$

Ans : False

23. If
$$x = ct$$
, $y = \frac{c}{t}$, then $\frac{dy}{dx}$ at $t = 2$ is 4.

Ans : False

24. |x| is a continuous function .

Ans : True

25. Every differentiable function is a Continuous functions.

Ans: True

26. $\frac{d}{dx}(tan^{-1}x) = \frac{-1}{1+x^2}$

Ans: False

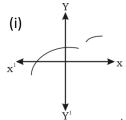
27. The Composition of two continuous function is Continuous.

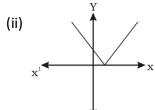
Ans : True

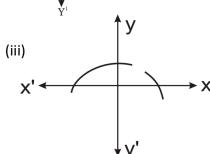
3 Marks Questions

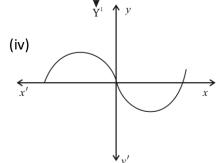
28. If $y = \frac{1}{x^{19}}$, then find $\frac{dy}{dx}$.

29. If $x = a \sec \theta, y = b \tan \theta$, find $\frac{dy}{dx}$.


- 30. Differentiate $y = x^x$ w. r. t. x
- 31. If $2x + 3y = \sin x$, find $\frac{dy}{dx}$.
- 32. Find $\frac{dy}{dx}$ if $x = a(\theta \sin \theta), y = a(1 + \cos \theta),$
- 33. If $y = x \cos x$, then find $\frac{d^2y}{dx^2}$.
- 34. Find k, if $f(x) = \begin{cases} \frac{x^2 9}{x 3}, & x \neq 3 \\ k, & x = 3 \end{cases}$ is continuous at x = 3.
- 35. Discuss the continuity of the function


$$f(x) = \begin{cases} \frac{\sin x}{2x}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$$
 at $x = 0$


- 36. Check the applicability of Rolle's Theorem for the function $f(x) = x^2 + 2x 8, \ x \in [-4,2]$
- 37. Discuss the applicability of Lagrange's Mean Value theorem to $f(x) = x^{3/4}, x \in [-1,1]$.


4 Marks Questions:

38. Which of the following graphs are of continuous and discontinuous functions?

- 39. Write the formula of differentiation using:
 - (i) Product rule
- (ii) Quotient rule
- 40. Differentiate $y = \frac{e^x + e^{-x}}{e^x e^{-x}}$ w. r. t. x
- 41. Write the formula for finding derivative of absolute function |f(x)|. Hence find f'(x) if f(x) = |2x 3|.
- 42. Verify LMV theorem for $f(x) = x^2 2x + 4$ in [1,5].
- 43. Differentiate $y = \sin^{-1} \left(\frac{2x}{1 + x^2} \right), -1 < x < 1 \text{ w. r. t. } x$
- 44. If $y = 5\cos x 3\sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$.

45. If
$$y = (\sin x)^{\cos x}$$
 find $\frac{dy}{dx}$.

Examine the continuity of

$$f(x) = \begin{cases} \frac{\sin 2x}{\sin 3x} &, & x \neq 0 \\ 2 &, & x = 0 \end{cases}$$
 at $x = 0$

Applications of Derivative

Multiple choice Questions:

1.	The slope of normal to the curve	$u = x^2 + 3$	at $x = 1$ is:
- .	The slope of hormal to the curve	$g - \kappa + \sigma$	ut 20 1 13 .

(b) $\frac{-1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{-1}{2}$ Ans: (d)

2. The value of x for which $\cos 2x$ attains its minimum value is :

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{6}$ Ans: (c)

The slope of tangent to the curve $y = 2x^2 + 3\sin x$ at x = 0 is : 3.

(a) 3 (b) -3 (c) 4 (d) -4 Ans: (a) The interval in which the function
$$f(x) = x^2 - 6x + 3$$
 is strictly increasing is

4.

(a)
$$(1,+\infty)$$
 (b) $(1,2)$ (c) $(3,+\infty)$ (d) $(-\infty,3)$ Ans: (c)

The Point where tangent to curve $y = x^2 - 4x + 5$ is parallel to x - axis is : 5.

The maximum value of $f(x) = x^3 - 3x$ in the interval [0,2] is : 6.

The rate of change of the area of a circle with respect to its radius at r = 5 is: 7.

(a)
$$10\pi$$
 (b) 8π (c) 12π (d) 13π Ans : (a)

8. The tangent to a given curve is parallel to x - axis if.

(a)
$$\frac{dy}{dx} = 1$$
 (b) $\frac{dy}{dx} = 0$ (iii) $\frac{dy}{dx} = -1$ (d) $\frac{dy}{dx} = 2$ Ans: (b)

Match the column:

Column - A Column - B

9. (a) The slope of tangent to curve given by
$$x=1-\cos\theta, y=\theta-\sin\theta \ \ \text{at} \ \ \theta=\frac{\pi}{2} \text{ is}$$

(b) The slope of tangent to the curve (ii) 0

$$x = at^2$$
, $y = 2at$ at $t = 2$ is (iii) 1

Ans
$$\begin{bmatrix} (a) \to (iii) \\ (b) \to (i) \end{bmatrix}$$

Column - B 10. Column - A

The slope of tangent to (a) (i)

- the curve $y = x^3 x$ at x = 2
- (b) The slope of normal to the Curve $y = 2x^3 1$ at x = 1

- (ii) 11
- (iii) $\frac{-1}{6}$ $\operatorname{Ans} \begin{bmatrix} (a) \to (ii) \\ (b) \to (iii) \end{bmatrix}$

11. Column - A

- (a) The minimum Value for the function $f(x) = (2x 1)^2 + 3$ is
- (b) The minimum value for the function $f(x) = 16(x-1)^2 + 24$

Column - B

- (i) 3
- (ii) 24
- (iii) 16

Ans
$$\begin{bmatrix} (a) \to (i) \\ (b) \to (ii) \end{bmatrix}$$

12. Column - A

- (a) Rate of change of volume of sphere, w.r.t. its radius.
- (b) Rate of change of perimeter of square w.r.t. its side .
- Column B
- (i) ∠
- (ii) $\frac{4}{3}\pi r^3$
- (iii) $4\pi r^2$

Ans
$$\begin{bmatrix} (a) \rightarrow (iii) \\ (b) \rightarrow (i) \end{bmatrix}$$

13. Column - A

(a)
$$f(x) = 3x^2 + 17$$

Column - B (i) Strictly increasing in $(0, \infty)$

(b) f(x) = |x|

- (ii) Strictly increasing on R
- (iii) Strictly decreasing in $[-\infty, 0)$

$$\operatorname{Ans} \begin{bmatrix} (a) \to (i) \\ (b) \to (iii) \end{bmatrix}$$

14. Column -A

- (a) The rate of change of area of a circle w.r.t. its radius r is
- (b) The rate of change of surface area of a ball w.r.t. its radius r is
- Column B
- (i) $2\pi r$
- (ii) $8\pi r$
- (iii) $\frac{4}{3}\pi r^3$

Ans
$$\begin{bmatrix} (a) \rightarrow (i) \\ (b) \rightarrow (ii) \end{bmatrix}$$

15. Column - A

- (a) The equation of tangent line to the curve $y = x^2$ at (0,0)
- (b) The equation of tangent line to the curve $y = x^3$ at (1,1)

Column - B

- (i) 3x y 2 = 0
- (ii) y = 0
- (iii) x = 0

Ans
$$\begin{bmatrix} (a) \rightarrow (ii) \\ (b) \rightarrow (i) \end{bmatrix}$$

Fill in the blanks from the following options:

(percentage, equilateral, 3, -1, increasing, decreasing, 1, critical point, relative error, isosceles)

16. The Point where f'(x) = 0 is called _____.

Ans: critical point

17. If $f'(x) \ge 0$, then the function is _____

Ans: Increasing

The local minimum Value of the function is given by 18. $f(x) = 3 + |x|, x \in \mathbb{R}$

Ans: 3

19. The Slope of tangent to the curve $\mathcal{Y} = \sin x$ at (0,0) is _____

Ans: 1

20. If two lines are perpendicular then product of their slopes is

Ans: - 1

The triangle of maximum area that can be inscribed in a given circle is an 21.

Ans: Equilateral

 $\frac{\Delta x}{x} \times 100$ is called the ______error in x. 22.

Ans: Percentage

State True or False

 $f(x) = \sin x$ is strictly decreasing function in $(0, \frac{\pi}{2})$ 23.

Ans: False

24. If x is real then maximum value of $x^2 - 8x + 17$ is 2

Ans: False

- The equation of tangent to the curve y = f(x) at the given point 25. (x_1, y_1) is $y - y_1 = \frac{dy}{dx} (x - x_1)$
- The value of function f is maximum at x = a if f'(a) = 0 and f''(a) < 026.

Ans: True

Ans: True

The minimum value for $f(x) = x^2, x \in \mathbb{R}$ is zero 27.

Ans: True

The logarithmic functions is strictly increasing on $(0, \infty)$ 28.

Ans: True

The interval in which $f(x) = 2x^2 - 3x$ is strictly decreasing is $(\frac{3}{4}, \infty)$ 29.

Ans: False

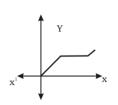
4 Marks Questions

- Find the approximate value of $\sqrt{401}$ 30.
- Find the rate of change of area of a circle w.r.t. its radius r at r = 6 cm. 31.
- 32. Prove that $f(x) = \cos x$ is strictly decreasing on $(0, \pi)$
- 33. Find the slope of tangent to the curve.

$$y = x^3 - x$$
 at $x = 2$.

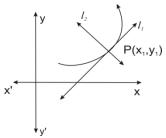
Find the slope of normal to the curve 34.

$$y = x^3 - x \text{ at } x = 2$$

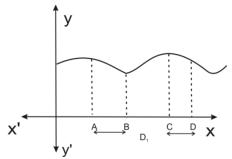

Find the points at which tangent to the curve 35.

 $y = x^3 - 3x^2 - 9x + 7$ is parallel to x - axis.

- Find all the points of local maxima and local minima of the function f given by : 36. $f(x) = 2x^3 - 6x^2 + 6x + 5$
- Find the approximate value of (i) $\sqrt{37}$ 37. (ii)
- Find the equation of normal line to the curve 38.


 $y = \sin^2 x$ at $x = \frac{\pi}{2}$

Which of the following graphs represents increasing and strictly increasing function. 39.



(i) (ii)

40. A curve C is represented in the following figure and two lines l_1, l_2 are drawn. Name the line which is tangent and normal to the curve. Also write equation of tangent and normal line to the curve y = f(x) at the given point $P(x_1, y_1)$

- 41. Write the condition of slopes of tangents when two lines are parallel. Hence find the equation of tangent to the curve $x^2 + 3y = 3$ which is parallel to the line y - 4x + 5 = 0.
- Let a real valued function f be defined in the domain of f i.e. D_f ,. Write the points 42. from the given figure which describe absolute maxima and absolute minima.

Also find absolute maximum and minimum value if the function $f(x) = x^{50} - x^{20}$ in the interval [0,1]

- 43. Find two positive numbers whose sum is 24 and their sum of squares is minimum.
- 44. A square piece of tin of side 24 cm is to be made in to a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the value of the box is maximum.
- Draw the rough diagram of the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ and draw the tangent lines parallel 45. to x - axis is and y = axis is. Also write their equations from the figure drawn.
- Using differentials, find the approximate value of $(15)^{1/4}$ 46.
- Let f(x) be continuous on [a,b] and differentiable on (a,b). Write the conditions on 47. derivative of f(x) when
 - f(x) is increasing in [a,b] (i)
 - (ii) f(x) is decreasing in (a,b]

INTEGRALS

Multiple Choice Questions:

- If $\int f(x)dx = g(x) + c$, then

 - (a) g(x) = f(x) (b) $\frac{d}{dx}g(x) = f(x)$ (c) $\frac{d}{dx}f(x) = g(x)$ (d) $g(x) \neq f(x)$

Ans: (b)

- 2.
 - (a) $\frac{x^0}{c} + c$ (b) $\log_e x + c$ (c) $\log_{10} x + c$ (d) $\log_e |x| + c$

Ans: (d)

- Which of the following is equal to $\int \frac{dx}{\sqrt{1-x^2}}$ 3.
 - (a) $sin^{-1}x + c$
- (b) $cos^{-1}x + c$
- (c) $\frac{\pi}{2} + \cos^{-1}x + c$ (d) $\tan^{-1}x + c$

Ans: (a)

- $\int e^x [f(x) + f'(x)] dx$ is equal to 4.
 - $e^x f'(x) + c$
- $e^x f(x) + c$
- (c)
- $e^{x} + f(x) + c$ (d) $e^{x} f(x) + c$

Ans: (b)

 $\int e^x(\cos x - \sin x)dx$ is equal to 5.

 $e^x \cos x + c$

- $e^x \sin x + c$
- (b) $-e^x \cos x + c$
- $-e^x \sin x + c$ (d)

Ans : (c)

- $\int \tan x \sec^2 x$ is equal to 6.
 - $\tan x + c$
- (b) $\frac{1}{2}\tan^2 x + c$
(d) $\sec x \tan x + c$
 - $\sec^2 x + c$

Ans: (b)

- $\int_{0}^{2} [x] dx$ is equal to 7.
 - (a)

- (b) 1 (c) $\frac{1}{2}$ (d) 0

Ans: (b)

Match the Column

8.

2

Column - II

(i)
$$\cos ec^{-1}x + c$$

- (a) $\int \frac{dx}{1+x^2}$ (b) $\int \frac{dx}{\sqrt{1-x^2}}$
- (ii) $\sin^{-1} x + c$
- (iii) $\tan^{-1} x + c$
- Ans $\begin{bmatrix} (a) \to (iii) \\ (b) \to (ii) \end{bmatrix}$

9. Column - I

Column - II

- $\int_{-\pi/2}^{\pi/2} \sin^7 x \mathrm{d}x$
- (i)
- (b) $\int_0^{\pi/2} \frac{\cos^5 x}{\sin^5 x + \cos^5 x} dx$
- $\frac{\pi}{2}$ (ii)
- (iii)

Ans $(a) \rightarrow (i)$ $(b) \rightarrow (iii)$

10. Column - I

Column - II

- (i) If $f(x) = x^3 + 1$
- (a) $\int_{-a}^{a} f(x)dx = 0$ (b) $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$
- (ii) If f(x) is an odd function
- If f(x) is an even function (iii)
 - Ans $\begin{bmatrix} (a) \rightarrow (ii) \\ (b) \rightarrow (iii) \end{bmatrix}$

11.

- Column I $\int e^{x} (\tan^{-1} x + \frac{1}{1+x^{2}}) dx$ (i) $e^{x} \sin^{-1} x + c$

(b)
$$\int e^x (\sin^{-1} x + \frac{1}{\sqrt{1-x^2}}) dx$$
 (ii) $e^x \tan^{-1} x + c$

(iii)
$$e^x \cos \sec^{-1} x + c$$
 Ans $\begin{bmatrix} (a) \to (ii) \\ (b) \to (i) \end{bmatrix}$

(a)
$$\int \sqrt{a^2 - x^2} dx =$$

(i)
$$\frac{x\sqrt{a^2-x^2}}{2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a} + c$$

$$\int \sqrt{a^2 + x^2} dx =$$

Column - II

(i)
$$\frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a} + c$$
(ii)
$$\frac{x\sqrt{a^2 + x^2}}{2} + \frac{a^2}{2}\log\left(x + \sqrt{a^2 + x^2}\right) + c$$

(iii)
$$\frac{x\sqrt{x^2-a^2}}{2} - \frac{a^2}{2}\log |x + \sqrt{a^2 + x^2}| + c$$

$$\operatorname{Ans} \begin{bmatrix} (a) \to (i) \\ (b) \to (ii) \end{bmatrix}$$

(a)
$$\int \frac{ax+b}{(x-p)(x-q)} dx$$

(b)
$$\int \frac{ax^2 + bx + c}{(x-p)^2(x-q)} dx$$

Column - II

(i)
$$\frac{A}{x-p} + \frac{B}{(x-p)^2} + \frac{C}{x-q}$$

(ii)
$$\frac{A}{x-p} + \frac{B}{(x-p)^2} + \frac{C}{x-r}$$
(iii)
$$\frac{A}{x-p} + \frac{B}{x-q}$$
Ans
$$\begin{bmatrix} (a) \to (iii) \\ (b) \to (ii) \end{bmatrix}$$
Column - II

(iii)
$$\frac{A}{x-p} + \frac{B}{x-q}$$

Ans
$$\begin{bmatrix} (a) \to (iii) \\ (b) \to (ii) \end{bmatrix}$$

14.

Column - I
(a)
$$\int \frac{1}{x^2 + 2x + 3} dx$$

(i) Column - II
$$\int \frac{1}{(x+1)^2+2} dx$$

(b)
$$\int \frac{1}{x^2+4x+6} \, dx$$

(ii)
$$\int \frac{1}{(x-1)^2+2} \ dx$$

(iii)
$$\int \frac{1}{(x+2)^2+2} \ dx$$

Ans
$$\begin{bmatrix} (a) \rightarrow (i) \\ (b) \rightarrow (iii) \end{bmatrix}$$

Fill in the blanks from the following options:

$$(\frac{-1}{2x^2}, 0, 1, \frac{\pi}{4}, \text{odd, even, sec } x + \mathbf{c}, \frac{\pi}{6}, -csec \ x + c, \frac{a^x}{loga} + c, e^x + c)$$

15.
$$\int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \underline{\qquad}$$

Ans:
$$\frac{\pi}{4}$$

16.
$$\int_{-a}^{a} f(x)dx = 0 \text{ if f is an } \underline{\qquad} \text{function.}$$

17.
$$\int_{-\pi}^{\pi} \sin^3 \cos^2 x dx$$
 is equal to _____

18.
$$\int e^{-3\log x} dx$$
 is equal to ______

Ans:
$$-\frac{1}{2x^2}$$

19.
$$\int \frac{\sin x}{\cos^2 x} dx$$
 is equal to _____

Ans:
$$\sec x + \mathbf{c}$$

20.
$$\int_{0}^{1} \frac{dx}{1+x^{2}}$$
 is equal to ______

Ans:
$$\frac{\pi}{4}$$

21.
$$\int \cos ecx \cot x \ dx \text{ is equal to } \underline{\hspace{1cm}}$$

Ans:
$$-cosec x + c$$

$$22. \qquad \int a^x dx = \underline{\qquad}$$

$$\mathsf{Ans}: \frac{a^x}{\log a} + c$$

State True or False:

23.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
 Ans: True

23.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
 Ans: True
24. If $f(a-x) = f(x)$, then $\int_{0}^{2a} f(x) dx = 0$ Ans: False

25.
$$\int_{a}^{b} f(x)dx \neq \int_{a}^{b} f(a+b-x)dx$$
 Ans: False

26.
$$\int_{a}^{b} f(x)dx$$
 if it exists, is a uniquely determined real number. **Ans : True**

27.
$$\int_{0}^{2\pi} \sin^2 x \, dx = 4 \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx$$
 Ans: True

28.
$$\int_{a}^{b} f(x)dx = \int_{b}^{a} f(x)dx$$
 Ans: False

28.
$$\int_{a}^{b} f(x)dx = \int_{b}^{a} f(x)dx$$
 Ans: False
29. $\int_{a}^{b} f(x)dx = \lim_{h \to 0} h \int_{b}^{a} f(a) + f(a+h) \dots + f(a+\overline{(n-1)}h)$; where $nh = b-a$

Ans: True

3 Marks Questions:

30. Evaluate
$$\int \frac{dx}{\sqrt{9-25x^2}}$$

31. Evaluate
$$\int \tan^2 x \ dx$$

32. Evaluate
$$\int \frac{1-\tan x}{1+\tan x} dx$$

33. Evaluate
$$\int x e^{3x} dx$$

34. Evaluate
$$\int e^x (\sec x + \sec x \tan x) dx.$$

35. Evaluate
$$\int \frac{dx}{x^2 + 2x + 7}$$

36. Evaluate
$$\int_{-1}^{3} (x^2 + 1) dx$$
37. Evaluate
$$\int_{0}^{1} \frac{x^8}{1 + x^9} dx$$

$$37. \qquad \text{Evaluate} \qquad \int\limits_0^1 \frac{x^8}{1+x^9} \, dx$$

38. Evaluate
$$\int_{0}^{\pi/2} \frac{\sin^{4} x}{\sin^{4} x + \cos^{4} x} dx$$

39. Evaluate
$$\int_{-2}^{2} |x+1| dx$$

4 Marks Questions

- Give any two examples of an intergral which can be solved by using partial fractions. 40.
- Complete perfect square of the quadratic equation $x^2 + 4x + 5 = 0$. Hence Evaluate 41.
- Write the properties to evaluate definite integrals when (i) f(x) is an odd function (ii) 42. f(x) is an even function.
- Give the formula of definite integral as the limit of a Sum and write nh for $=\int_{-\infty}^{\infty} x \, dx$. 43.
- Write the name of the rule for integrating the product of two functions. Also Evaluate 44. $\int x \sin x \, dx$.

45. Evaluate
$$\int \frac{x^2}{x-1} dx$$
.

46. Evaluate
$$\int_{0}^{1} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx$$

47. Evaluate
$$\int \frac{dx}{1 + \sin x}$$

Application of Integrals

Multiple Choice Questions:

1. Using integration, area of circle $x^2 + y^2 = 25$ is:

(a) 5π sq.units (b) 10 sq.units (c) 25π sq.units (d) 10π sq.units

Ans:(c) 25π sq.units

2.Using integration, area of ellipse $\frac{x^2}{16}+\frac{y^2}{25}=1$ is: (a) 20π sq.units (b) 20 sq.units (c) 25π sq.units (d) 16π sq.units

Ans:(a) 20π sq.units

3. Integral for the area of circle $x^2 + y^2 = 16$ is:

(a)
$$\int_0^4 \sqrt{16-x^2} \ dx$$
 (b) $\int_0^4 (16-x^2) \ dx$ (c) $4 \int_0^{16} \sqrt{16-x^2} \ dx$ (d) $4 \int_0^4 \sqrt{16-x^2} \ dx$

Ans: (d)
$$4 \int_0^4 \sqrt{16 - x^2} \ dx$$

4. Integral for the area bouned by parabola $y^2 = 4x$ and straight lines x = 1, x = 5 in the first (a) $\int_{1}^{5} 2\sqrt{x} \, dx$ (b) $\int_{1}^{5} 4x \, dx$ (c) $\int_{1}^{5} 2x \, dx4$ (d) $\int_{1}^{5} 16x^{2} \, dx$ Ans:(a) $\int_{1}^{5} 2\sqrt{x} \, dx$

(a)
$$\int_{1}^{5} 2\sqrt{x} \, dx$$

(b)
$$\int_{1}^{5} 4x \, dx$$

(c)
$$\int_{1}^{5} 2x \, dx^{4}$$

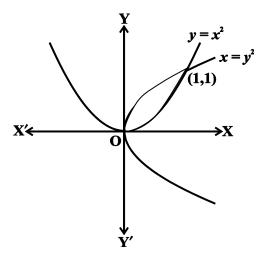
(d)
$$\int_{1}^{5} 16x^2 dx$$

Ans:(a)
$$\int_{1}^{5} 2\sqrt{x} \, dx$$

State True or False:

We can find the area between curve and x-axis using definite integrals. (T)

- We can find the area between curves using differentiation. 2. (F)
- Finding area under the curve is an application of integrals. 3. (T)


3 Marks Questions:

Find the area of the region bounded by the curves:

$$y = x^2, x = 1, x = 5$$
 and $x - axis$ [Ans: 41.33]

2. Shade the common region bounded by the parabolas :

$$y = x^2$$
 and $x = y^2$

[Ans : $\frac{1}{2}$]

3. Find the area between the curve:

$$y = x^2, x - axis$$
 and the line $x = 0$ and $x = 2$ [Ans : $\frac{8}{3}$]

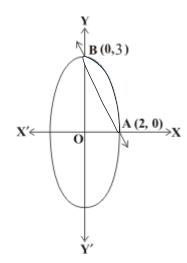
4. Formulate the integral for the curve y = f(x) above the x - axis, between x = a and x = b.

[Ans:
$$\int_a^b y \, dx$$
]

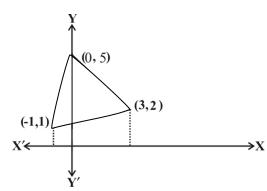
5. Using integration, find the area in the first quadrant of circle $x^2 + y^2 = 4$

[Ans:
$$\pi$$
]

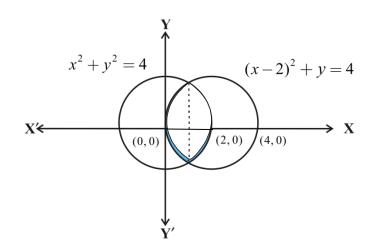
6. Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.


[Ans:
$$4\sqrt{3}$$
]

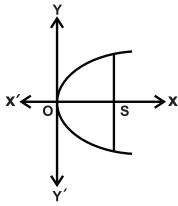
- 7. Draw the rough sketch of the region bounded by the lines given by : |x| + |y| = 1
- 8. Write the formula to evaluate area bounded under two curves y = f(x) and y = g(x) and line x = a and x = b by using integration, where


$$f(x) > g(x) \ \forall \ x \in [a, b]$$
 [Ans : Area = $\int_{c}^{b} [f(x) - g(x)] dx$,

4 Marks Questions:


9. In the given figure shade the shorter (smaller) region bounded by the line $\frac{x}{2} + \frac{y}{3} = 1$ and ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$. Also form the integral to evaluate the area of shaded region.

10. In the given figure, shade the region bounded by the vertices (-1,1), (0,5) and (3,2).


11. Shade the region enclosed between the circles $x^2 + y^2 = 4$ and $(x-2)^2 + y^2 = 4$ in the given figure.

- Find the area bounded by the curves $y^2 = 4x$ and y = 2x12.
- Find the area bounded by the ellipse: 13.

$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

Find the area enclosed under the parabola $y^2 = 49x$ and its latus -14. rectum.

- Draw the rough sketch of two parabolas $y = x^2$ and $x = y^2$ and shade 15. the region enclosed by the curves:
- Draw the rough sketch of the region of a triangle whose vertices are 16. (2,-2), (4,3) and (1,2).

Differential Equations

Multiple Choice Questions:

1. The order of the given differential equation is:

$$(y''')^2 + (y'')^3 + (y')^4 + y^5 = 0$$

- (A) 0 (B) 3 (C)
- 2
- (D) Not defined

[Ans:B]

The degree of the given differential equation : 2.

$$\frac{dy}{dx} + 5y = 0 \text{ is :}$$

[Ans : C]

3 (B) 0 (C) 1 Solution of the given differential equation. 3.

$$\frac{dy}{dx} = \tan^2 x \text{ is :}$$

- $y = \cot x + c$ (A)
- (B) $y = \sec x - x + c$
- $y = \tan x x + c$ (C)
- (D) None of these

[Ans : C]

- 4. The number of arbitrary constants in the particular solution of a differential equation of fourth order are:
 - (A)
- (B)
- (C)
- (D)

[Ans:A]

5.	The number of arbitrary constants in the general solution of a differential equation of third order are . (A) 3 (B) 2 (C) 1 (D) 0
	[Ans : A]
6.	Which of the following of differential equation has $y = c_1 e^x + c_2 e^{-x}$ as the general solution?
	(A) $\frac{d^2y}{dx^2} + y = 0$ (B) $\frac{d^2y}{dx^2} - y = 0$
	(C) $\frac{d^2y}{dx^2} + 1 = 0$ (D) $\frac{d^2y}{dx} - 1 = 0$ [Ans : B]
7.	Which of the following differential equation has $y = x$ as one of its
	particular solution? $d^2v = 2 dv \qquad d^2v = dv$
	(A) $\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = x$ (B) $\frac{d^2y}{dx^2} - x \frac{dy}{dx} + xy = x$
	(C) $\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = 0$ (D) $\frac{d^2y}{dx^2} - x \frac{dy}{dx} + xy = 3$ [Ans : C]
8.	The general solution of differential equation $\frac{dy}{dx} = e^{x+y}$ is;
	(A) $e^x + e^{-y} = c$ (B) $e^x + e^y = c$
	(C) $e^{-x} + e^{y} = c$ (D) $e^{-x} + e^{-y} = c$ [Ans : A]
9.	A homogenous differential equation of the form $\frac{dx}{dy} = h(\frac{x}{y})$ can be solved
	by making the substitution : (A) $y = vx$ (B) $v = yx$ (C) $x = vy$ (D) $x = v$ [Ans : C]
10.	Which of the following is homogenous differential equation.
	(A) $(4x+6y+5)dy-(3y+2x+4)dx=0$
	(B) $(xy)dx - (x^3 + y^3)dy = 0$
	(C) $(x^3 + 2y^2)dx + 2xy dy = 0$
	(D) $y^2 dx + (x^2 - xy - y^2) dy = 0$ [Ans : D]
Fill	in the blanks from the following options:
	$\left[\frac{1}{\sqrt{1-u^2}}, \text{ Positive}, \frac{1}{x}, mx, \text{ Negative}\right]$
11.	Order and degree (if defined) of a differential equation are alwaysintegers.
12.	[Ans : Positive] The integrating factor of the differential equation $ (1-y^2) \frac{dx}{dy} + yx = ay, (-1 < y < 1) \text{ is } \underline{\hspace{1cm}} . $
	[Ans : $\frac{1}{\sqrt{1-v^2}}$]
13.	The integrating factor of Differential equation $x \frac{dy}{dx} - y = 2x^2$ is
	$\frac{dx}{dx} = \frac{1}{x}$ [Ans: $\frac{1}{x}$]
	\overline{x}

State as True/False:

15. The given differential equation $(x-y)\frac{dy}{dx} = x + 2y$ is homogenous. [Ans:T]

16.
$$\frac{dy}{dx} + Py = Q$$
 is a homogenous differential equation. [Ans : F]

Match the Columns:

17.

Column A

(a)
$$\frac{dy}{dx} = e^{x} + 1$$
(b)
$$\frac{dy}{dx} = e^{x+y}$$

(i)
$$e^x + e^{-y} = c$$

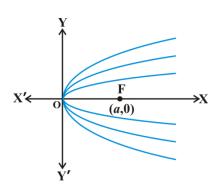
(b)
$$\frac{dy}{dx} = e^{x+y}$$

(ii)
$$e^x e^y = c$$

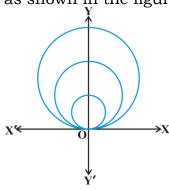
(iii)
$$y = x + e^x + c$$
 [Ans : a - (iii), b - (i)]

(a)
$$\frac{d^2y}{dx^2}$$

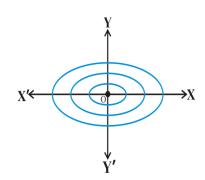
(b)
$$\frac{d^3y}{dx^3}$$


(c)
$$\frac{dy}{dx}$$

(iii)
$$\mathcal{Y}_n$$


(iv)
$$y''$$
 (a)-(iv),(b)-(ii),(c-i)

4 Marks Questions:


- Give an example of a differential equation whose degree is not defined?
- Write the differential equation representing the family of parabolas $y^2=4ax$ having vertex at origin and axis along positive direction of x - axis

- 21. Give an example of linear differential equation.
- Find the integrating factor of differential equation $\frac{dy}{dx} + y = \cos x$ 22.
- 23. Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$
- Write the differential equation of family of circles, touching the x-axis at 24. the origin as shown in the figure given below:

Write the differential equation of the following 25. family of ellipses, having foci on x - axis and centre at origin (figure given)

Vectors

Choose the correct option from the given options:

- The unit vector in the direction of the vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$
 - $\hat{i} + \hat{j} + 2\hat{k}$ (a)
- (b) $\frac{\hat{i}}{2} + \frac{\hat{j}}{2} + \frac{2\hat{k}}{3}$
- (c) $\frac{\hat{i}}{\sqrt{6}} + \frac{\hat{j}}{\sqrt{6}} + \frac{2\hat{k}}{\sqrt{6}}$ (d) $\frac{\hat{i}}{\sqrt{3}} + \frac{\hat{j}}{\sqrt{3}} + \frac{2\hat{k}}{\sqrt{3}}$

[Ans :(c)]

- If \vec{a} and \vec{b} are two vectors, then scalar projection of vector \vec{a} on vector \vec{b} is: 2.
- $\vec{a}.\vec{b}$ $|\vec{a}|$
- (c)
- $\vec{a}.\vec{b}$ (d)

[Ans :(d)]

- Area of a parallogram, whose two adjacent sides are given by the two 3. vectors \vec{a} and \vec{b} , is:
 - $|\vec{a} \times \vec{b}|$ (a)
- (b)
- (c)
- (d) $\frac{1}{2} |\vec{a} \times \vec{b}|$

[Ans :(a)]

- Area of a parallogram whose diagonals are represent by the two 4. vectors \overline{d}_1 and \overline{d}_2 is:
 - (a) $|\overrightarrow{d}_{\scriptscriptstyle 1}\! imes\!\overrightarrow{d}_{\scriptscriptstyle 2}|$

- $\frac{1}{2} \left| \overrightarrow{d_1} \times \overrightarrow{d_2} \right| \qquad (d) \qquad \frac{1}{2} \left| d_1 \cdot d_2 \right|$

[Ans :(c)]

Fill in the blanks from the following options:

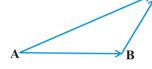
 $(0^o, \overrightarrow{a} - \overrightarrow{b}, \overrightarrow{0}, 1, |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta, |\overrightarrow{a}| |\overrightarrow{b}|)$

 \vec{a} + $(-\vec{b})$ = ----5.

[Ans. $\vec{a} - \vec{b}$]

6.

[Ans. $|\vec{a}| |\vec{b}| \cos \theta$]


- When two vectors \vec{a} and \vec{b} are parallel to each other then angle between 7. them is -----[$Ans. 0^{0}$]
- $\hat{i}\times i=\hat{j}\times\hat{j}=\hat{k}\times\hat{k}=-----$ 8.

 $(Ans.\vec{0})$

 $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = -----$ 9.

[Ans. 1]

- For Δ ABC (figure), which of the following statement is not true?
 - $\overrightarrow{AB} \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$
 - (B) $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$
 - $\overrightarrow{AB} + \overrightarrow{BC} \overrightarrow{CA} = \overrightarrow{0}$

AB - CB - CA = 0

[Ans :(b)]

- 11. Which of the following statements is not true?
 - $(\hat{i} \times \hat{j}) \cdot \hat{k} + \hat{i} \cdot \hat{j} = 1$ (a)
 - $(\hat{k} \times \hat{j}) \cdot \hat{i} + \hat{j} \cdot \hat{k} = 1$ (b)
 - $(\hat{k} \times \hat{i}) \cdot \hat{i} + \hat{i} \cdot \hat{k} = 1$ (c)

[Ans :(b)]

3 Marks Questions:

Find the sum of vectors: 12.

$$\vec{a} = \hat{i} - 2\hat{j} + \hat{k}, \quad \vec{b} = -2\hat{i} - 4\hat{j} + 5\hat{k}, \quad \vec{c} = \hat{i} - 6\hat{j} - 7\hat{k}$$

[Ans :
$$-12\hat{j} - \hat{k}$$
]

13. If
$$\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$$
, then find $|\vec{a}|$.

Find the vector joining the points P (2,3,0) and Q (-1, -2, -4), directed from P to Q. 14.

[Ans :
$$-3\hat{i} - 5\hat{j} - 4\hat{k}$$
]

- Show that the vectors $2\hat{i} + 3\hat{j} 4\hat{k}$ and $4\hat{i} + 6\hat{j} 8\hat{k}$ are collinear. 15.
- Find the unit vector in the direction of the vector $\vec{a} = -\hat{i} + 2\hat{j} + 2\hat{k}$. 16.

[Ans :
$$\frac{-1}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$$
]

[Ans : $\frac{-1}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$] Find the direction cosine of the vector given by $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ 17.

Ans:
$$\frac{1}{\sqrt{14}}$$
, $\frac{2}{\sqrt{14}}$ $\frac{3}{\sqrt{14}}$]

Find the value of 'x' and 'y' if the two vectors $2\hat{i} + 3\hat{j}$ and $x\hat{i} + y\hat{j}$ are 18. equal.

[Ans:
$$x = 2, y = 3$$
]

Find the angle between vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$. 19.

[Ans :
$$\cos^{-1}(\frac{5}{7})$$
]

- Show that the vectors $\vec{a} = 2\hat{i} + 3j$ and $\vec{b} = 4\hat{i} + 6\hat{j}$ are parallel. 20.
- Find $|\vec{a} \times \vec{b}|$ if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} + 2\hat{k}$. 21.

[Ans:
$$\sqrt{243}$$
]

Find the area of a parallogram if two adjacent sides of a parallogram are 22. $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$.

$$[\mathrm{Ans}:\sqrt{42}]$$

- Find the value of : $(3\vec{a} 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$. 23.
- Find the value of 'p' for which the vectors: 24.

$$3\hat{i} + 2\hat{j} + 9\hat{k}$$
 and $\hat{i} - 2p\hat{j} + 3\hat{k}$ are parallel.

[Ans :
$$p = (-\frac{1}{3})$$
]

Three Dimensional Geometry

Fill in the blanks from following options:

$$(1,a^{1}a^{2}+b^{1}b^{2}+c^{1}c^{2}=0,(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}).(\overrightarrow{b_{1}}\times\overrightarrow{b_{2}})=0,\overrightarrow{r}=-\hat{\imath}+2\hat{k}\pm\lambda(3\hat{\imath}+4\hat{\jmath}+6\hat{k}),\\ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1,\left|\frac{(\overrightarrow{b_{1}}\times\overrightarrow{b_{2}}).(\overrightarrow{a_{2}}-\overrightarrow{a_{1}})}{|(\overrightarrow{b_{1}}\times\overrightarrow{b_{2}})|}\right|,<\pm\frac{1}{\sqrt{3}},\pm\frac{1}{\sqrt{3}},>)$$

- 1. If < l,m,n> are direction cosines of a line, then $l^2+m^2+n^2=$ _____. Answer:1
- 2. The vector equation of a line passing through the points (-1,0,2) and (3,4,6)

is _____. Answer :
$$\bar{r} = -\hat{i} + 2\hat{k} + \lambda (\hat{i} + \hat{j} + \hat{k})$$

3. The shortest distance between the lines $\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$

Answer:
$$\left| \frac{(\overrightarrow{b_1} \times \overrightarrow{b_2}).(\overrightarrow{a_2} - \overrightarrow{a_1})}{|(\overrightarrow{b_1} \times \overrightarrow{b_2})|} \right|$$

4.	Direction cosines of a line which makes equal angles with co-ordinate axes
	are Answer : $<\frac{\pm 1}{\sqrt{3}},\frac{\pm 1}{\sqrt{3}},>$
5.	Two lines with direction ratios a ₁ ,b ₁ ,c ₁ and a ₂ ,b ₂ ,c ₂ are perpendicular if
	Answer : $a_1a_2 + b_1b_2 + c_1c_2 = 0$
6.	Intercept form of the equation of a plane is
	Answer: $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
_	
/.	Two lines $r = a_1 + \lambda b_1$ and $r = a_2 + \mu b_2$ are coplanar if Answer : $(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) = 0$
	ple Choice Questions:
•	The direction cosines to the normal to the plane $2x+3y-z=5$ are
	(a) <2,3,-1> (b) <-2,-3,1> (c) < $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$, $\frac{-1}{\sqrt{14}}$ > (d) < $\frac{2}{5}$, $\frac{3}{5}$, $\frac{-1}{5}$ >
	Answer: (c)
9	The direction ratios of a line joining the points A(2,3,-4) and B(1-2,3) are
٥.	(a) $<1,5,7>$ (b) $<1,-5,7>$ (c) $ 1,-5,-7 $ (d) $<1,5,-7>$
	Answer : (d)
10	The equation of plane passing through origin is
	(a) $ax+by+cz = 3$ (b) $ax+by+cz = 1$ (c) $ax+by+cz = 0$ (d) $ax+by+cz = \sqrt{3}$
	Answer : (c)
11	The lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are
	(a) Perpendicular (b) Parallel
	(c) Intersecting (d) None of these Answer: (a)
12	Angle between two planes $\vec{r}.\hat{n}_1$ = d_1 and $\vec{r}.\hat{n}_2$ = d_2 is
	(a) $\cos \theta = \left \frac{\hat{n}_1 - \hat{n}_2}{ \hat{n}_1 \hat{n}_2 } \right $ (c) $\sin \theta = \left \frac{\hat{n}_1 \cdot \hat{n}_2}{ \hat{n}_1 \hat{n}_2 } \right $
	(b) $\cos \theta = \left \frac{\hat{n}_1 \cdot \hat{n}_1}{ \hat{n}_1 \hat{n}_2 } \right $ (d) $\sin \theta = \left \frac{\hat{n}_1 - \hat{n}_2}{ \hat{n}_1 \hat{n}_2 } \right $
	$ n_1 n_2 $ Answer : (b)
13	The intercepts cut off by the plane $2x+y-z = 5$ are
	(a) $\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}$ (b) 2,1, -1 (c) $\frac{2}{5}, \frac{1}{5}, \frac{-1}{5}$ (d) $\frac{5}{2}, 5, -5$ Answer: (d)
	ate as True/False:
14	Direction Cosines of XY plane are <1,1,0> (F)
15	The pair of lines given by $\vec{r} = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda$ (6 $\hat{i} + 4\hat{j} - 8\hat{k}$) and
	$\vec{r} = -5\hat{\imath} + 7\hat{\jmath} - 4\hat{k} + \mu(3\hat{\imath} + 2\hat{\jmath} - 4\hat{k}) \text{ are parallel }. \tag{T}$
16	The equation of line passing through the point (1,2,3) and parallel to the vector
	$3\hat{i} + 2\hat{j} - 4\hat{k}$ is $\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \mu(3\hat{i} + 2\hat{j} - 4\hat{k})$ (F)
	The equation of plane with direction ratios a,b,c is ax+by+cz = 0 (F)
18	The angle between the lines passing through origin and direction ratios a ₁ ,b ₁ ,c ₁
	and a_2,b_2,c_2 is $\sin\theta = \frac{a_1a_2+b_1b_2+c_1c_2}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}$ (F)
19	The equation of a line passing through two points (x_1,y_1,z_1) and (x_2,y_2,z_2)
	is $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$
	$x_2 - x_1$ $y_2 - y_1$ $z_2 - z_1$

Match the following:

(F)

- 20. (i) Lines are perpendicular
 - (ii) Lines are parallel
- 21. (i) Equation of a line passing through one point and parallel to given vector (ii) Equation of plane in normal form
- 22. (i) Shortest distance between two lines (ii) Distance of origin from plane \vec{r} . $\hat{n} = d$
- 23. (i) Two lines are coplanar (ii)Equation of plane through three non collinear points

(p)
$$l^2+m^2+n^2=1$$

(q)
$$a_1a_2 + b_1b_2 + c_1c_2 = 0$$

(r)
$$a_1 = ka_2$$
, $b_1 = kb_2$, $c_1 = kc_2$
Answer (i) - (q), (ii)- (r)

(p)
$$\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$$

(q)
$$\vec{r} \cdot \hat{n} = d$$

(r)
$$\vec{r} = \vec{a} + \lambda \vec{b}$$

$$\left(\mathsf{q} \left| \frac{\hat{b} \times (\vec{a}_2 - \vec{a}_1)}{|b|} \right|$$

(r)
$$\left| \frac{(\vec{a}_2 - \vec{a}_1).(\vec{b}_2 - \vec{b}_1)}{|\vec{b}_1 \times \vec{b}_2|} \right|$$

Answer (i) - (r), (ii) -(p)
$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

(q)
$$a.(x-x_1) + b.(y-y_1) + c.(z-z_1) = 0$$

(r)
$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ & \text{Answer (i) - (r), (ii) -(p)} \end{vmatrix} = 0$$

3 Marks Questions

24. Find the angle between the pair of lines given by $\vec{r} = 3\hat{i} + 2\hat{j} + 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k})$ and

$$\vec{r} = \hat{i} + \hat{j} + \hat{k} + \mu \left(3\hat{i} + \hat{j} + 2\hat{k} \right)$$

- 25. Find the distance of a point (2,5,-3) from the plane \vec{r} .(6 \hat{i} -3 \hat{j} +2 \hat{k}) = 4
- 26. Find direction cosines of the unit vector perpendicular to the plane \vec{r} .(6î-3ĵ-2 \hat{k})+1 = 0 passing through the origin.
- 27. Find the value of p so that the lines $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ and $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ are at right angles.
- 28. Show that the points A(2,3,-4),B(1,-2,3) and (3,8,-11) are collinear.
- 29. Show that the lines $\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5}$ and $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$ are coplaner.
- 30. Find the shortest distance between the lines

$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$$
 and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$

31. Find the shortest distance between the lines

$$r = \hat{i} + 2\hat{j} + \hat{k} + \lambda(\hat{i} - \hat{j} + \hat{k})$$
 $r = 2\hat{i} + 2\hat{j} - \hat{k} + \mu(2\hat{i} + \hat{j} + 2\hat{k})$

- 32. Find the equation of a plane through the intersection of planes x+y+z=1 and 2x+3y+4z=15 which is perpendicular to the plane x-y+z=0
- 33. Find the equation of a plane that passes through the points (1,1,0), (1,2,1) and (-2,2,-1)
- 34. Find the co-ordinates of the foot of perpendicular drawn from the origin to the plane

PROBABILITY

Fill in the blanks from following options:

 $(5/6 \ \frac{1}{2}, \sum x_i^2 p(x_i)$, impossible, 0.35, 0, not defined, sure, 0.65, 16/25)

1.	If P (A) = 0.35, then P(\overline{A})	·	Answer : 0.65
2.	P(A) = 1 is called	_ event.	Answer: Sure
3.	If a dice is tossed once, the probability of	of getting an even nu	mber is
			Answer : $\frac{1}{2}$
	If P (A) = $\frac{1}{2}$, P(B) = 0 then P(A/B) is	·	Answer:Not defined
5.	If X is a random variable & Var. (X) = $\frac{25}{36}$	then standard devia	tion =

6. Variance of a random variable is $E(X^2) - [E(X)]^2$ where $E(X^2) =$ Answer: $\Sigma X_i^2 p(x_i)$

7. If P (A) =0.6, P(B) = 0.5 and P(A \cap B) =0.32 then P(A/B) = ___

8. If A is an impossible event than P (A) = Answer: 0

Multiple Choice Questions

9. Two cards are drawn from a well shuffled deck of 52 cards with replacement. The probability that both cards are queen is

(a) $1/13 \times 1/13$

(b) 1/13 + 1/13

(c) $1/52 \times 1/52$

(d) 1/52 + 1/52

Answer:(a) 10. If P(A) = 3/5, P(B) = 1/5 and A and B are independent events the P (A and B) is

(a) 1/3

(b) 25/3

(c) 1/12

(d) 3/25

Answer: (d)

11. If A and B are events such that P(A/B) = P(B/A) then

(a) $A \subseteq B$ but $A \neq B$ (b) A = B

(c) $P(A \cap B) = \phi$

(d) P(A) = P(B)

Answer: (d)

12. If P(A) = 6/11, P(B) = 5/11 and $P(A \cap B) = 4/11$ then P(A/B) is

(a) 7/11

(b) 2/5

(c) 3/11

(d) 4/5

Answer: (d)

13. A family has two children. The probability that both the children are boys given that at least one of them is a boy is

(a) $\frac{3}{4}$

(b) $\frac{1}{3}$

c) $\frac{1}{4}$

(d) $\frac{2}{3}$

Answer : (d) $\frac{1}{2}$

14. A random variable X has following probability distribution.

Х	0	1	2	3	4
P(X)	K	2K	2K	2K	K

Then the value of K is

(a) 1/6

(b) 1/4

(c) 1/3

(d) 1/8

Answer: (d)

15. A random variable X has following probability distribution

X	-2	-1	0	1	2	3
P(X)	0.1	K	0.2	2K	0.3	K

Then the value of K is

(a) 1 (b) 0.1 (c) 10 (d) 0.01 Answer : (b)

True/False:

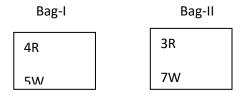
- 16. If P(A) = 3/5, P(B) = 3/10 and $P(A \cap B) = 1/5$, then A and B are Independent (F)
- 17. If A and B are mutually exclusive events then they will be independent (F)
- 18. Two independent events are mutually exclusive (F)
- 19. If A and B are independent events then $P(A \cap B) = P(A)$. P(B) (T)
- 20. Mean of probability distribution is also called expectation (T)

21. If
$$P(A) = 0.6$$
 then $P(\overline{A}) = 0.6$ (F)

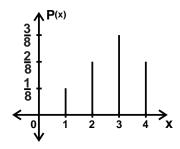
$$22. P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (T)

- 23. A coin is tossed six times, the probability of obtaining 4 heads is 15/64 (T)
- 24. If P(A) = 3/7, P(B) = 7/5, $P(A \cap B) = 3/5$ then A and B are not independent (F)

3 Marks Questions


25. If A and B are independent events with P(A) = 0.3, P(B) = 0.4, find $P(A \cup B)$.

26.
$$P(\overline{A}) = 0.6$$
, $P(B) = 0.2$, $P(B/A) = 0.5$, find $P(A \cap B)$


- 27. P(A) = 0.4, P(B) = 0.8 and P(B/A) = 0.6 find $P(A \cap B)$
- 28. A coin is tossed two times. Find the probability distribution of number of tails.
- 29. Probability of solving specific problem independently by A and B are ½ and 1/3 respectively. If both try to solve the problem independently, find the probability that problem is solved.
- 30. If P(A) = 6/11, P(B) = 5/11 and $P(A \cup B) = 7/11$ then find $P(A \cap B)$
- 31. If A and B are two independent events and $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{3}$ find $P(A \cup B)$

4 Marks Questions

32. Bag- I contains 4 red balls & 5 white balls and bag-II contains 3 red & 7 white balls as shown in figure. A bag is selected at random and a ball is drawn. Find the probability of getting a white ball.

- 33. The probability of solving a problem by A, B and C are P(A) = 1/3, $P(B) = \frac{1}{3}$, $P(C) = \frac{1}{5}$. What is the probability that at least one of them will solve the problem?
- 34. If A and B are two independent events such that $P(A) = \frac{1}{2}$, P(B) = p and $P(A \cup B) = \frac{3}{5}$, find p.
- 35. Find the mean of probability distribution given by following diagram:

- 36. Find the probability distribution of
 - (i) Number of heads in two tosses of a coin
 - (ii) Number of tails in four tosses of a coin
- 37. Find mean of number of heads in the three tosses of a coin.
- 38. A die is thrown 6 times. If getting an odd number is considered a success, what is the probability of 5 successes.

Linear Programming

Fill in the blanks from following options:

	(Maxima and minima, optimal solution, linear programming problem, feasible
	region, constraints, unbounded, common, bounded)
1.	The problems which seeks to maximize or minimize profit or loss is called
	Ans: Liner programming problems.
2.	The linear inequalities of a linear programming problem are called

- Ans: Constraints.

 3. The maximum or minimum value of linear function is called .
- The maximum or minimum value of linear function is called ______.
 Ans: optimal solution.
- 4. Feasible region is the _____region determined by all the constraints of a linear programming problem.
- Ans: common

 5. The points within and on the boundary of a_____ represents feasible solution.
 - Ans: feasible region
- 6. When the feasible region is bounded then Z ______.

 Ans: has maxima & minima

True/False

- 7. Subject to constraints $x+3y \le 9$, $x \ge 0$, $y \ge 0$, maximum value of z = x+2y is 9 (T)
- 8. Subject to constraints $2x+y \le 4$, $x \ge 0$, $y \ge 0$, minimum value of

$$z = 2x + 3y$$
 is 8 (F)

- 9. Subject to constraints $x+y \le 4$, $x \ge 0$, $y \ge 0$, maximum value of z = 3x+4y is 16 at the point (0,4)
- 10. Minimum value of z = 200x+500y subject to constraints x+2y \geq 10, x \geq 0,

$$y \ge 0$$
, is 2500. (F)

- 11. Subject to constraints $x+y \le 50$, $x \ge 0$, $y \ge 0$, maximum value of z = 4x+y is 200. (T)
- 12. When the feasible region is bounded, then Z has both maximum and minimum. (T)
- 13. Any point outside the feasible region is called an infeasible solution. (T)

Match the following:

14. (i) Max value of z = x+y subject to

(p) 8

constraints x+y+2<0, $x \ge 0$, $y \ge 0$ is (ii) Max value of z = 2x+3ysubject to constraints $x+2y \le 4$, $x \ge 0$, $y \ge 0$ is

15. (i) Minimum value of z = x+y subject to constraints x+y+1< 0, x ≥ 0, y ≥ 0 is
(ii) Minimum value of z = 3x+2y

(ii) Minimum value of z = 3x+2ysubject to constraints $2x+y \le 8$, $x \ge 0$, $y \ge 0$ is

- 16. (i) Maximum value of z = 2x+y subject constraints $x+y \le 3$, $x \ge 0$, $y \ge 0$ is (ii) Maximum value of z = x+3y subject to constraints $x+y \le 8$, $x \ge 0$, $y \ge 0$ is
- 17. (i) Minimum value of z = x+2y subject to constraints $x+y \le 5$, $x \ge 0$, $y \ge 0$ is (ii) Minimum value of z = 3x+y subject to constraints $x+y \le 3$, $x \ge 0$, $y \ge 0$ is

(q) 3

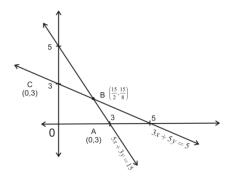
(r) Does not exist

Ans [(i) - (r), (ii) - (p)]

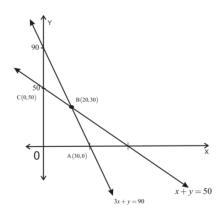
- (p) 12
- (q) -1
- (r) Does not exist

Ans [(i), - (r), (ii) - (p)]

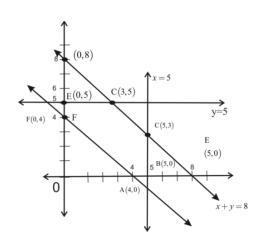
- (p) 24
- (q) 6
- (r) 3

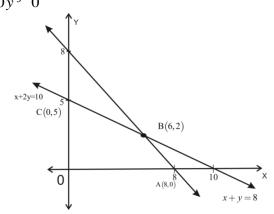

Ans :[(i) - (q), (ii) - (p)

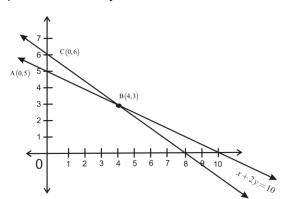
- (p) 3
- (q)9
- (r) 5


Ans :[(i) - (r) (ii) -(p)]

4 Marks Questions:


Shade the feasible region in the given figure subject to constraints $5x + 3y \pm 15$, $3x + 5y \pm 15$, x^3 0, y^3 also maximize z = 8x + 16y for the given graph.


19. Maximize z=4x+y for the given graph subject to constraints $x + y \le 50$, $3x + y \le 90$, x^3 0, y^3 0 Also shade the feasible region is given graph.


20. Minimize Z=x-7y the given graph. shade feasible region. Subject to constraints x^3 0, y^3 0, $x+y \le 8$, $x \mbox{\it \pounds}$ 5, $y \mbox{\it \pounds}$ 5, $x+y^3$ 4.

21. Minimize z = 3x + 2y from your graph subject to constraints x+y£ 8, x + 2y£ 10, x^3 0 y^3 0

22. Shade the feasible region to the given figure subject to constraints $x+2y^3$ 10 , 3x+4y£ 24, x^3 0 , y^3 0 . Also minimize z=200x+500y

